Effect of substrate RNA sequence on the cleavage reaction by a short ribozyme.
نویسندگان
چکیده
Leadzyme is a ribozyme that requires Pb2+. The catalytic sequence, CUGGGAGUCC, binds to an RNA substrate, GGACC downward arrowGAGCCAG, cleaving the RNA substrate at one site. We have investigated the effect of the substrate sequence on the cleavage activity of leadzyme using mutant substrates in order to structurally understand the RNA catalysis. The results showed that leadzyme acted as a catalyst for single site cleavage of a C5 deletion mutant substrate, GGAC downward arrowGAGCCAG, as well as the wild-type substrate. However, a mutant substrate GGACCGACCAG, which had G8 deleted from the wild-type substrate, was not cleaved. Kinetic studies by surface plasmon resonance indicated that the difference between active and inactive structures reflected the slow association and dissociation rate constants of complex formation induced by Pb2+rather than differences in complex stability. CD spectra showed that the active form of the substrate-leadzyme complex was rearranged by Pb2+binding. The G8 of the wild-type substrate, which was absent in the inactive complex, is not near the cleavage site. Thus, these results show that the active substrate-leadzyme complex has a Pb2+binding site at the junction between the unpaired region (asymmetric internal loop) and the stem region, which is distal to the cleavage site. Pb2+may play a role in rearranging the bases in the asymmetric internal loop to the correct position for catalysis.
منابع مشابه
Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme.
Ribozymes are RNAs that possess the dual properties of RNA sequence-specific recognition, analogous to conventional antisense molecules, and RNA substrate destruction via site-specific cleavage. The cleavage reaction is catalytic in that more than one substrate molecule is processed per ribozyme molecule. We have designed a hairpin ribozyme that cleaves human immunodeficiency virus type 1 (HIV-...
متن کاملActivation of HIV-specific ribozyme activity by self-cleavage.
A hammerhead ribozyme designed to cleave in trans the R region of HIV-1 RNA was inserted into a eukaryotic expression vector. This ribozyme was studied in vitro using the T3 RNA polymerase promoter located upstream of the eukaryotic promoter. The ribozyme showed no activity against its specific target sequence under any condition tested. To decrease the influence of potential cis inhibitory seq...
متن کاملIn vitro activity of the hairpin ribozyme derived from the negative strand of arabis mosaic virus satellite RNA.
The negative strand of the satellite RNA of tobacco ringspot virus [(-)sTRSV] is a self-cleaving RNA, of which self-cleaving domain is called the hairpin ribozyme. The negative strand of the satellite RNA of arabis mosaic virus [(-)sArMV] has been suggested to have a hairpin ribozyme-like secondary structure, and we have previously shown that this hairpin domain of (-)sArMV has ribozyme activit...
متن کاملEvidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme.
J1/2 of the Tetrahymena ribozyme, a sequence of three A residues, connects the RNA-binding site to the catalytic core. Addition or deletion of bases from J1/2 improves turnover and substrate specificity in the site-specific endonuclease reaction catalyzed by this ribozyme: G2CCCUCUA5 (S) + G in-equilibrium G2CCCUCU (P) + GA5. These paradoxical enhancements are caused by decreased affinity of th...
متن کاملA spermidine-induced conformational change of long-armed hammerhead ribozymes: ionic requirements for fast cleavage kinetics.
The catalytic activity of the trans cleaving hammerhead ribozyme 2as-Rz12, with long antisense flanks of 128 and 278 nt, was tested under a wide range of different reaction conditions for in vitro cleavage of a 422 nt RNA transcript derived from human immunodeficiency virus type 1 (HIV-1). Depending on the reaction conditions, in vitro cleavage rates varied by a factor of approximately 100. Inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 26 24 شماره
صفحات -
تاریخ انتشار 1998